1 3 N ov 2 00 6 The Analytic Strong Multiplicity One Theorem for
نویسنده
چکیده
Let π = ⊗πv and π ′ = ⊗π ′ v be two irreducible, automorphic, cuspidal representations of GLm (AK). Using the logarithmic zero-free region of Rankin-Selberg L-function, Moreno established the analytic strong multi-plicity one theorem if at least one of them is self-contragredient, i.e. π and π ′ will be equal if they have finitely many same local components πv, π ′ v , for which the norm of places are bounded polynomially by the analytic conductor of these cuspidal representations. Without the assumption of the self-contragredient for π, π ′ , Brumley generalized this theorem by a different method, which can be seen as an invariant of Rankin-Selberg method. In this paper, influenced by Landau's smooth method of Perron formula, we improved Brumley's polynomial bound in the exponent of the analytic conductor to the linear bound of 4m + ε.
منابع مشابه
1 5 N ov 2 00 6 The Analytic Strong Multiplicity One Theorem for
Let π = ⊗πv and π ′ = ⊗π ′ v be two irreducible, automorphic, cuspidal representations of GLm (AK). Using the logarithmic zero-free region of Rankin-Selberg L-function, Moreno established the analytic strong multi-plicity one theorem if at least one of them is self-contragredient, i.e. π and π ′ will be equal if they have finitely many same local components πv, π ′ v , for which the norm of pla...
متن کاملN ov 2 00 6 Rees ’ s theorem for arbitrary ideals
In this work we generalize the celebrated Rees’s theorem for arbitrary ideals in a local ring by using the Achilles-Manaresi multiplicity sequence as a generalization of the Hilbert-Samuel multiplicity.
متن کاملN ov 2 00 6 A Combination Theorem for Strong Relative Hyperbolicity Mahan
We prove a combination theorem for trees of (strongly) relatively hyperbolic spaces and finite graphs of (strongly) relatively hyperbolic groups. This gives a geometric extension of Bestvina and Feighn's Combination Theorem for hyperbolic groups.
متن کاملA Theorem on Analytic Strong Multiplicity One
Let K be an algebraic number field, and π = ⊗πv an irreducible, automorphic, cuspidal representation of GLm(AK) with analytic conductor C(π). The theorem on analytic strong multiplicity one established in this note states, essentially, that there exists a positive constant c depending on ε > 0,m, and K only, such that π can be decided completely by its local components πv with norm N(v) < c · C...
متن کاملar X iv : m at h / 06 11 38 6 v 1 [ m at h . R A ] 1 3 N ov 2 00 6 Quasi Q n - filiform Lie algebras ∗
In this paper we explicitly determine the derivation algebra, automorphism group of quasi Qn-filiform Lie algebras, and applying some properties of root vector decomposition we obtain their isomorphism theorem. AMS Classification: 17B05; 17B30
متن کامل